AdeTom Tutors

Grab a Tutor and Secure your Future

Equilibrium Constant

Things to KNOW when calculation Chemical Equilibrium

$$
a A+b B \leftrightarrow c C+d D
$$

1. Balance the equation
2. Solids and aqueous solutions are not included in calculations
3. TEMPERATURE must be kept constant

$$
\begin{aligned}
K_{c} & =\frac{\text { Products }}{\text { Reactants }} \\
K_{c} & =\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}
\end{aligned}
$$

4. ONLY ROUND OFF YOUR FINAL ANSWER

Example 1

1. Write the K_{C} expression for the following $\mathrm{Cu}(s)+2 \mathrm{Ag}^{+}(a q) \leftrightarrow \mathrm{Cu}^{2+}(a q)+$ $2 A g(s)$
2. Calculate the value of K_{c} given the following: Initially, a mixture of $0,100 \mathrm{~mol} . \mathrm{dm}^{-3} \mathrm{NO} ; 0,050 \mathrm{~mol} . \mathrm{dm}^{-3} \mathrm{H}_{2} ; 0,100 \mathrm{~mol} . \mathrm{dm}^{-3} \mathrm{H}_{2} \mathrm{O}$ was allowed to reach equilibrium. At equilibrium, the concentration of $N O$ is found to be $0,062 \mathrm{~mol} . \mathrm{dm}^{-3}$. Determine the value of K_{c} assuming that temperature is kept constant.

	NO	H_{2}	$\mathrm{~N}_{2}$	$\mathrm{H}_{2} \mathrm{O}$
Ratio				
Initial concentration				
Change in concentration				
Equilibrium concentration				

$$
K_{c}=\frac{\text { Products }}{\text { Reactants }}
$$

Example 2

1. A certain amount of nitrogen dioxide gas $(\mathrm{NO} 2)$ is sealed in a gas syringe at $25^{\circ} \mathrm{C}$. When equilibrium is reached, the volume occupied by the reaction mixture in the gas syringe is $80 \mathrm{~cm}^{3}$. The balanced chemical equation for the reaction taking place is:

$$
2 N O 2(g) \rightleftharpoons N 2 O 4(g) \Delta H<0
$$

At equilibrium the concentration of the $\mathrm{NO} 2(\mathrm{~g})$ is $0,2 \mathrm{~mol} \cdot \mathrm{dm}^{-3}$. The equilibrium constant for the reaction is 171 at $25{ }^{\circ} \mathrm{C}$.
Calculate the initial number of moles of $\mathrm{NO} 2(g)$ placed in the gas syringe
2. Carbon dioxide reacts with carbon in a closed system to produce carbon monoxide, $C O(g)$, according to the following balanced equation:

$$
C O 2(g)+C(s) \rightleftharpoons 2 C O(g) \Delta H>0
$$

Initially an unknown amount of carbon dioxide is exposed to hot carbon at $800^{\circ} \mathrm{C}$ in a sealed $2 \mathrm{dm}^{3}$ container. The equilibrium constant, $K c$, for the reaction at this temperature is 14 . At equilibrium it is found that $168,00 \mathrm{~g}$ carbon monoxide is present.
Calculate the initial amount (in moles) of $\mathrm{CO} 2(\mathrm{~g})$ present.

