

Equilibrium Constant

Things to KNOW when calculation Chemical Equilibrium

$$aA + bB \leftrightarrow cC + dD$$

- 1. Balance the equation
- 2. Solids and aqueous solutions are not included in calculations
- 3. TEMPERATURE must be kept constant

$$K_{c} = \frac{Products}{Reactants}$$

$$K_{c} = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$$

4. ONLY ROUND OFF YOUR FINAL ANSWER

Example 1

- 1. Write the K_c expression for the following $Cu(s) + 2Ag^+(aq) \leftrightarrow Cu^{2+}(aq) + 2Ag(s)$
- **2.** Calculate the value of K_c given the following: Initially, a mixture of 0,100 $mol.\,dm^{-3}\,NO$; 0,050 $mol.\,dm^{-3}\,H_2$; 0,100 $mol.\,dm^{-3}\,H_2O$ was allowed to reach equilibrium. At equilibrium, the concentration of NO is found to be 0,062 $mol.\,dm^{-3}$. Determine the value of K_c assuming that temperature is kept constant.

	NO	<i>H</i> ₂	N ₂	H ₂ O
Ratio				
Initial				
concentration				
Change in				
concentration				
Equilibrium				
concentration				

$$K_c = \frac{Products}{Reactants}$$

Example 2

1. A certain amount of nitrogen dioxide gas (NO2) is sealed in a gas syringe at $25~^{\circ}C$. When equilibrium is reached, the volume occupied by the reaction mixture in the gas syringe is $80~cm^3$. The balanced chemical equation for the reaction taking place is:

$$2NO2(g) \rightleftharpoons N2O4(g) \Delta H < 0$$

At equilibrium the concentration of the NO2(g) is $0.2 \ mol \cdot dm^{-3}$. The equilibrium constant for the reaction is $171 \ at \ 25 \ ^{\circ}C$. Calculate the initial number of moles of NO2(g) placed in the gas syringe

2. Carbon dioxide reacts with carbon in a closed system to produce carbon monoxide, CO(g), according to the following balanced equation:

$$CO2(g) + C(s) \rightleftharpoons 2CO(g) \Delta H > 0$$

Initially an unknown amount of carbon dioxide is exposed to hot carbon at $800\,^{\circ}C$ in a sealed $2\,dm^3$ container. The equilibrium constant, Kc, for the reaction at this temperature is 14. At equilibrium it is found that $168,00\,g$ carbon monoxide is present.

Calculate the initial amount (in moles) of CO2(g) present.